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Most two-phase flow models are based on the fully averaged two-
fluid concept. This paper describes a new discrete particle model that is
intermediate between the numerically intractable local instant descrip-
tion and the fully averaged two-fluid model, thereby providing a more
detailed but still tractable description of dynamical two-phase flow
phenomena. The new model uses a Lagrangian description for a single
dispersed bubble phase and a one-dimensional Eulerian description for
a single continuous liquid phase. In contrast to many other particle
simulation models, the present model includes compressible phases
and large bubbles whose size may be comparable to the computational
cell size. The discrete Lagrangian description of the dispersed phase
aliows the particles to have a distribution of sizes, shapes, etc., thereby
capturing the important statistical aspects of dispersed two-phase flow.
In contrast to the two-fluid models, the discrete particle model allows
the use of more mechanistic models for dispersed phase coalescence
and breakup, wakes, etc., thereby allowing the dynamic prediction of
flow regime evolution and transitions without the use of flow regime
maps inherent in two-fluid models. Numerical simulations for two test
problems are presented. Agreement with experimental data is generally
satisfactory. Extensions of the model to heat transfer and to two
discrete and twoe continuous phases will be described elsewhere.
© 1993 Academic Press. Inc.

I. INTRODUCTION

The modeling and numerical simulation of two-phase
flow continues to pose complex and challenging problems.
Descriptions based on the local instantaneous Navier—
Stokes equations with internal interfaces are clearly intrac-
table in all but the simplest cases. Most current two-phase
flow models are based upon the averaged two-fluid concept.
This paper describes a one-dimensional model based on a
multiphase description that is intermediate between the

* Work supported by the US. Department of Energy, Assistant
Secretary for Conservation and Renewable Energy, under DOE Field
Office, Contract DE-AC07-76ID01 570,

numericatly intractable local instant description and the
fully averaged two-fluid model. Dispersed phases are
modelled using Lagrangian descriptions for the particles
that are embedded within the Eulerian description for
the continuous phases. This approach: (1) permits the
statistical features of the dispersed phase to be modelled
directly, (2) permits the dynamic prediction of flow regime
evolution without the explicit use of flow regime maps, and
{(3) avoids the numerical diffusion associated with Eulerian
implementations of multi-field descriptions. Similar models
have previously been successfully used to model fuel sprays
[1-6]. Our extension to two-phase flow presents additional
challenges related to void fraction coupling between
compressible phases and bubbles that are no longer small
compared to computational cell sizes.

In its present form, the model is limited to a single
dispersed phase (bubbles or drops) in a single continuous
phase (liquid or gas), and this is the form described in the
present paper. The present description is also limited to
isothermal flow without heat transfer. Extensions to heat
transfer and a second discrete and continuous phase are in
progress and will be reported elsewhere.

A computer code, DISCON, has been written to imple-
ment this model. Shown in Fig. 1 is a section of a pipe with
a simulated dispersed bubbly flow. As is evident in the
graphic, spherical bubbles, elliptical bubbles, spherical cap
bubbles, and extended cylindrical bubbles are generated as
the simulation progresses.

The basic concept of the model is to describe the motion
of the dispersed phase using a Lagrangian description. The
main motivation is to develop a more mechanistic descrip-
tion of the dispersed phase allowing for distributions of
bubble sizes and their interactions. This in turn leads to the
dynamic prediction of flow regimes. However, in order for
the continuous phase and the discrete phase to interact, it is
necessary to relate the two descriptions. This interaction
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FIG. 1, Simulation of bubbly flow using the DISCON computer code.

takes place through three mechanisms: {1} phase coupling,
because each phase occupies a volume not available to the
other phase (volume fraction coupling), (2) interface drag
between the phases (momentum coupling), and (3)
coalescence and breakup of the dispersed phase bubbles.
The first mechanism proved the most difficult to implement
numerically.

The paper is organized as follows. Section II describes
the discrete phase Lagrangian model equations for the
mechanical case and Section III describes the continuous
phase Eulerian model equations for this case. Section IV
describes the phase coupling models, Section V contains
a summary of the basic equations, Section VI describes
the semi-implicit solution scheme, Section VII contains
two illustrative simulation and data comparisons, and
Section VIII presents some concluding remarks.

II. DISCRETE PHASE LAGRANGIAN
MODEL EQUATIONS

The mass and momentum equations for each particle
(bubble) are based on the average properties of that par-
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ticle. Because each particle has its own position in space and
is individually tracked, the conservation equations are
ordinary differential equations governing the time evolution
of mass and momentum. Each evolution equation includes
appropriate interaction terms with the continuous phase
through which the particle is moving.

A. Discrete Phase Mass Equation

The conservation equations are written in a partially dis-
cretized form showing the time levels of all source terms.
Any undiflferentiated term without a time level shown is
evaluated at the old, nth, time level. All terms that are
evaluated at the new time level contain an n + 1 superscript.
In the following, dJQ/dt is understood to mean
(Q"*'—Q")/At. The mass conservation equation for
particle p is

dip, V) _
Ta Y ®

where p,, is the average particle density and V, is the volume
of the particle. In the numericai implementation of all the
particle equations, the time derivatives of products are
expanded into products of derivatives, and first-order
forward differences are used with the coefficients evaluated
at the old time level. Because the description of cach particle
is Lagrangian, the particle density and volume are functions
of time only.

B. Discrete Phase Momentum Equation

The momentum balance for particle p is

du dpP
ppr;f=pprg—Vpa_Fp’ (2)

where u, is the velocity of particle p and g is the acceleration
of gravity. The second term is the interface force due to the
mean pressure gradient about the particle. The third term,
F,, is the sum of the interface drag force and the added mass
force,

d
Fp=fp(u:+1_ap)+ca<p>p Vp I:%_<a>p:|$ (3)

where f,=(0.5¢(p>, C4A, lu,—ii,}) is the interface drag
coefficient, {p >, is the average continuous phase density at
the location of the particle, C, is the drag coefficient, 4, is
the equivalent frontal area of the particle, &, is the average
far field continuous phase velocity at the location of the
particle, C, is the added mass coefficient, and {a), is the
average continuous phase acceieration at the location of
the particle. The particle velocity is evaluated implicitly in
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the interface drag term, which removes the need for a small
time step due to the large values of the interface drag
coefficient, f,.

C. Discrete Phase Kinematic Position Equation

A final equation to advance the particle position, x,,, is
needed in this Lagrangian description. It is

dx
A iea

(4)
Modifications of Eq. {(4) to include simpie turbulence effects
are described later, These modifications incorporate the fact
that the particles are three-dimensional, and therefore, we
use two additional kinematic position equations to track the
particle in the other two dimensions. However, our model
does not include any interaction terms between the
continuous phase and the discrete phase in these two per-
pendicular directions. We also use the three-dimensionality
of the particle in the coalescence model to compute the over-
lap between particles to determine if they should be merged.
The coalescence model is described in detail later.

Equations (1)-(4) are solved for each particle. Simula-
tions have been made with the number of particles ranging
from one to over 1000,

IHl. CONTINUOUS PHASE EULERIAN
MODEL EQUATIONS

The continuous phase equations for the mechanical case
are discretized using a staggered Eulerian mesh, shown in
Fig. 2. Mass is conserved in each continuity cell, and
momentum is conserved in each momentum cell. The edges
of continuity cells are called junctions and are at the centers
of the momentum celis. The edges of the momentum cells
are at the centers of the continuity cells. Discrete values of
densities and pressures are located at the centers of the con-
tinuity cells, and discrete velocities are located at the centers
of the momentum cells. In the finite difference equations,

Junction
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FIG. 2. Continuity and momentum cell locations for the staggered
Eulerian grid.
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some variables are needed at locations where they are not
defined. Averaging and/or upstream differencing techniques
are used to compute these values.

A. Continuous Phase Mass Equation

The continuous phase mass balance for volume, 1V, is

(0t pr Vi)

7 (3)

i+ 1 n+ 1y
+ Ay 00018 —aypu ) =0,

where a, is the continuous phase volume fraction of the con-
trol volume, p, is the average phasic density in cell &, V) is
the volume of control volume %, and A is the cross-sectional
flow area, which i1s assumed to be constant. The average
continuous phase velocity at junction j is u;. The variable «
is defined in Section IV.A in terms of the particle volume,
¥V,, and particle location, x,. In Eq. (§), the second and
third terms on the left-hand side represent the flux of mass
out of and into cell k. As in the particle equations, the time
derivatives are expanded and first-order forward time
differences are used with the coefficients evaluated at the old
time level. The spatial terms are differenced in a numerically
conservative manner.

To prevent a convective instability due to centered flux
terms, the fluxed densities in Eq. (5) are differenced using
upstream values (donored) if the velocity is not zero.
Because the particles are tracked in a Lagrangian manner,
there are no instabilities associated with «, and the fluxed
volume fractions are not donored.

B. Continuous Phase Momentum Equation

The continucus phase momentum equation is

du; fu
a0V (a_;"‘ U a} =-

N
—Fu Y 0 F,

p=1

aPrH- 1
Via ox +a;V;p; 8

(6)

where V', is the momentum cell volume, P is the pressure, F,,
is the wall drag coefficient, and g, is the fraction of particle
p in momentum cell j. The variable, #,,, will be explicitly
defined in Section IV.A in terms of the particle volumes.
Consistency between the particle and the continuous phase
momentum interface terms, F,, must be satisfied. The con-
tinuity cell variables with a j subscript are simple averages
of neighboring continuity cell values. The convective
acceleration terms are evaluated using a one-sided upwingd
spatial gradient (i.e., donoring to make the convective terms
stable). In order to make this scheme implicit in the terms
responsible for sound wave propagation, the pressure
gradient in the momentum equation and the velocity in the
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mass balance are both evaluated at new time. Hence, this
scheme does not have the time step limit based on the sound
speed that explicit schemes have.

IV. PHASE COUPLING MODELS

The coupling of the discrete Lagrangian and continuous
Eulerian phases proved to be the most difficult part of the
modeling and numerical algorithm development. This sec-
tion describes the coupling models under four headings: (A)
volume fraction coupling, (B) momentum transfer coupling,
(C) coalescence, and (D) a simple turbulence model.

A. Volume Fraction Coupling

In two-phase bubbly flow, the dispersed phase bubbles
can become quite large due to coalescence, merging to form
extended cylindrical bubbies that have transverse diameters
approeaching the pipe diameter. For this reason, the volume
occupied by the dispersed particles can not be neglected as
it frequently is in modeling liquid sprays [1-6].

The volume fraction coupling between the dispersed and
continuous phases must be treated carefully. The volume of
a particle located at x, is clearly discrete in space. The
volume fraction, %, in the continuous phase equations
results from these spatially discrete particle volumes,
However, in the continuous phase equations, the volume
fraction is a continuous field variable with a spatially
smooth distribution, as in the classical two-fluid model.

This dual character of the volume fraction means that
some smoothing interpolation must be used when the
discrete particle volumes are combined to calculate the
continuous phase volume fraction. This has been done in
DISCON using an extended particle shape function. This
should not be confused with the actual shape of the particle,
which is described in Section IV.C. The continuous phase
model represents the average phase properties over a region
of space comparable to the cell iength, 4x. Therefore, in
order to smooth out this particle-induced continuous phase
volume variation, the particle volume is distributed over an
drbitrary length. In the present code, this length is set to the
Eulerian cell length, Ax. The code has also run successfully
with this arbitrary length set to two or three particie
diameters. Because the particle locations are Lagrangian,
this smoothing does not introduce any artificial diffusion of
the volume fraction. It is simply an interpolation of the
volume occupied by the discrete particies onto the con-
tinuous field volume fraction, which is itself an average
value over the cell.

The cross-sectional area occupied by an extended particle
at position x and time ¢ is given by 4 ,(x, ¢). It will be con-
venient when we extend the particle’s length to partition the
cross-sectional area into the product of two terms, the par-
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ticle’s volume, ¥,(¢), and the particle’s shape, n,(x, ¢}. Since,
the integral of the cross-sectional area occupied by a
particle, 4,(x, t), over its length is equal to the particle’s
volume, V,(¢), the integral of the particle’s shape over the
same length must be unity. We also require that the shape
function not change as the particle propagates down the
pipe, ie., the (x, ¢) dependence of the shape function is a
function of the relative distance, ¢,, from the particle’s
position, n,(x, 1} =n,(q,) =n,{x — x,(t)), where x,(1) is the
position of the particle. Thus, we have

’ Ap(x! t) = Vp(t) np(x_xp(t))' (7)

If we integrate 7, with respect to x over cell k, we obtain
the fraction of the particle that is located in cell k,
(8)

M) = {n(x—x,(0)} dx.

cellk

A parallel definition integrating over the length of
junction J gives the fraction of the particle that is located in
Junction cell j, n,.(#). If the entire particle is in cell k, then #,,
is equal to unity, or if an entire particle is in junction cell /,
the n, is equal to unity.

The integral of Eq. (7) over one Eulerian cell divided by
the volume of the cell gives the particle volume fraction in
cell k, o,

V
w0 =[ 0] tae sy = 0]
{9}

The time derivative of a, appears in the mass conserva-
tion equation, Eq. (5). Since

N
ak=1'— Z akp,
p=1

(10)

we need the time derivative of the bubble volume fraction,
a,,- Differentiating Eq. (9) with respect to time gives

dotyy(1) _ [nkp(t)][de(t)]
dt V, dt
V(1) dn(q,) o[ x —x,(z)]
+[ Vi ]jenk {

[ dq ot
Making use of the fact that the time derivative of x,(¢) is
the bubble velocity, u,(¢), and that the derivative of ¢ with
respect to x is one, we have

da;;;(f) _ [m;it)][a’?t(t)]

_ Vp(f)up(t)] .{d'?(qp)}
[ Vi j. celle | dyg dq.  (12)

}dx. (11)
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The integral can be written as the difference of the “out”
minus the “in” values of # at the two junctions at either end
of cell k. Integrating the last term in Eq. (12) and remem-
bering that cell k£ is bounded by junction j on the left and
J+1 on the right gives

doy(2) [Wkp(t)][de(l)]
a |V, dr

:| (x4 1 = 2,(0)) — n{x; — x,(1))].

(13)
Instead of using the point value of » at junction j, the
average junction value is used. This results in additional

smoothing of the solution as a particle moves from cell to
cell. Hence,

daz;(t) _ [m;it)][d?t(r)]

O e IR

The particle volume fraction in a junction cell is defined in
a manner paralleling Eq. (9) and leads to

a,-,,(:){’%’] [ fntx— o) v

”[Vp(t) mp(t)]
= v :

Equation (15) gives the relationship between the junction
fraction, n,,, and the junction volume fraction due to
particle p. Using this in Eq. (14), one obtains the time
derivative of the volume fraction due to particle p,

do (1) [ ()| dV (0
dt _[ v, ][ dt }

—u,(1) |:-——-—-——a" = 1‘”(;); a”’([)].

(15)

{16)

This is the expression used in the code development. For a
multi-particle system, the right-hand side becomes a sum
over all particles.

B. Momentum Transfer Coupling

The momentum coupling between the discrete particles
and the continuous phase is due to the interface force acting
on the surface of the particles. (In Eq. (6), the momentum
transfer due to mass transfer has been neglected.) This inter-
face force is modelled in the particle momentum equation by

581/107/2-12
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the three terms f,{u, —i,), V,0P/dx, and the added mass
term.

The first term represents the classical drag force as
measured on a particle immersed in a continuous phase.
The drag force is formulated in terms of a drag cocfficient,
C,, based on the equivalent frontal area. This drag coef-
ficient is obtained from the data correlations of Peebles and
Garber [7], Harmathy [87], and Ishii and Chawla [9].
Peebles and Garber give the drag coefficient in the laminar
and distorted particle regime. They use a four region
formula. Harmathy gives a better formula for Region 4 and
adds a fifth formula for the fully turbulent Taylor cap
region. The resulting drag coefficients for bubbles are:

C,=240 (Re)~ 1

C,=18.7 (Re)~ @

C,=00275G (Re)*  (

C,=0488G"** Re (Region 4),
(

_ 8
Cd_i

(Region 1),
(Region 2

4]

Region 3),

)
)
) (17)
)

Region 3).

where Re is the Reynolds number based on the refative
velocity, continuous phase properties, and the equivalent
particle diameter, and G is the Morton number. The
transition from one region to another is carried out in a
smooth manner such that C,is a continuous function of the
equivalent particle diameter by switching regions at the
point where they give equal values for C,,.

For large bubbles, particles interact with the wall, and the
Taylor cap develops a cylindrical tail. Harmathy has
summarized the drag data for this flow region and gives

for C;
17 4r. .
C,= [?][ﬁjl {Region 6),

where r, is the equivalent bubble radius, R is the pipe radins,
and 4 depends upon the Edtvos number computed using the
pipe radius. The formula used for 4 is taken from Stuhmiller,
Ferguson, and Meister [10]. A simple exponential transi-
tion formula is used in the region between the bubble
formulas in Eq. (17) and the cylindrical bubble formuia
in Eq.(18). The transition formula is that given by
Stuhmiller [10].

When using this formulation for a simulation with many
bubbles of various sizes, the question arises of what should
be used for the continuous phase far field velocity. In the
case of a single bubble rising in a uniform fluid, the
appropriate continuous phase far field velocity is clear and
is easily determined. In the intermediate situations, the
appropriate far field reference velocity is not well defined.
For cylindrical bubbles that nearly fili the pipe, the

(18)
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appropriate far field reference velocity is the continuous
phase velocity far ahead of or far behind the bubble.
Neglecting compressibility effects, this is equivalent to using
the mean volumetric flux as the far field reference velocity.
At the other extreme of a single small bubble rising in a large
1ank, the far field velocity is clearly the liquid velocity far
from the bubble, which in the limit of vanishing small
bubble size is equivalent to the mean volumetric flux.

In the intermediate case, where there are many bubbles of
various sizes present in the flow, it is necessary to estimate
an equivalent far field velocity for use in the drag correla-
tions. Several papers have recently addressed this problem,
see Kowe [117 and Couet [12]. A reasonable model for the
interstitial far field velocity that takes into account the
added mass of the continuous phase that is displaced with
the particles has been developed in these references. This
model is applicable to low void fraction dispersed flows.
When the bubble number density becomes small, the
analysis becomes inappropriate. In DISCON, we consider a
full range of bubble number densities and bubble sizes
including large cylindrical bubbles filling the pipe. We have
chosen to use the mean volumetric flux as the far field
reference velocity in all situations. This choice simplified the
coding and clearly is appropriate in the limiting cases.

Recalling Eq. (15), one obtains for the volumetric flux at
any junction:

_ V
uj=ajuj+2ajpup=ajuj+znj,,?’—fu,,. (19)
P P J

The volumetric far field velocity defined in Eq. (1%} is
independent of position when the continuous and particle
phases are incompressible and there is no mass transfer. In
the numerical simulations, it is important to represent this
far field velocity with a spatially smooth function inde-
pendent of the Lagrangian nature of the particles. The
velocity in Eq. (19) is consistent with the far field velocities
used when the correlations were developed and gives the
spatially smooth reference velocity needed in the drag force
calculation.

The far field velocity defined above is not the whole story.
Each particle can also be influenced by the wake of
preceding particles. A trailing particle can be “trapped” in
the wake of a leading particle. When a trailing particle, say
a bubble rising in a liquid, is in the wake of another bubble,
it is rising in a flow field that has a velocity more nearly
equal to that of the leading bubble. It rises due to buoyancy
in this modified flow field. This is the primary mechanism
allowing bubbles to approach and coalesce. This effect is
modeled by modifying the far field velocity in Eq. (19) by
the wake velocity of leading particles when making the drag
calculation.

The velocity in the wake of a solid object has been
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discussed in several texts, see for example Batchelor [13]
and Schlichting [14]. In general, for turbulent flow the
wake-induced flow at any position x behind an object can
be expressed as '

tonem ) exp ([ =])

where u,(x) is the centerline wake velocity and r,(x)} is a
scale for the radial distribution of the wake velocity. A
standard integral momentum balance gives the relationship
between u,, and r.,,

w r., ] 1

[ur][rp] A
where u, is the velocity of the wake producing object relative
to the fluid, and r, is the equivalent radius of the particle
based upon a spherical shape consistent with the calculation
of C,. Using Egs. (20) and (21), the velocity at any location
behind an object caused by its wake can be [ound if we know
u,, or r. Stuhmiller has carried out a preliminary correla-

tion of wake centerline velocity data from several sources
and gives a formula for u,(x),

U, x x\
][ )R] @
where a, =020, b,=0.12, ¢,=001, and R, is the actual
radius of the particle shape, which is discussed in Sub-
section C below.

To complete the wake model, the wake velocity of every
bubble leading the bubble in question is calculated using the
above formulas. The leading bubble that gives the largest
wake velocity is used to calculate the modified far field
velocity, i, for the trailing bubble. The trailing bubble thus
“sees” this modified far field velocity in its drag correlation.
It rises in the wake flow field at a rate determined by the
balance of drag and buoyancy forces. This is the primary
mechanism by which trailing bubbles overtake leading
bubbles.

The second momentum coupling term, V,dP/dx,
represents the average pressure force on the particle surface
due to the mean pressure gradient in the continuous phase.
In the present version of DISCON, this effective mean
pressure gradient in the continuous phase is modelled using
the gravity head and inertial acceleration of the far field
continuous phase flow,

o3 - (ot
ox_ Poe| 6t+u3x>]’

where {p >, is the continuous phase density at the location
of particle p. The first term on the right-hand side combines
with the gravitational term in Eq. (2) to give the traditional

(20)

(21)

(23)
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buoyancy force. The second term is a correction to include
the acceleration of the far-field velocity.

C. Coalescence

So far in the development, the actval shape of the
dispersed particle has not been a factor in the model
The drag correlations are based upon the frontal area of an
equivalent sphere having volume ¥V, and the actual shape
has not been needed.

In general, bubbles take on a variety of shapes depending
upon their size. The sequence of shapes shown in Fig. 3 is
generally characterized in increasing volume as spherical,
oblate spheroidal, Taylor cap, and cylindrical bubble. We
used the simple formulas given by Stuhmiller [10] to
characterize each shape. These formulas are based upon the
EGtvos number, &, the particle volume, ¥,, and the pipe
radius, R.

The Edtvos number is defined as

_ 2 ]p—pp'
a—4grp[-——o_ ]

(24)

These shapes are explicitly used at two places in the
model and in all visual output from a DISCON simulation.
The actual radius of the particles, R,, is used in the wake
centerline velocity calculation, Eq. (22}.

The actual particle radius, R,, and the actual vertical
height of a particle are also used in our simple coalescence
model. Two bubbles merge or coalesce if they overlap in the
radial and axial directions by more than a certain fraction.
This overlap fraction is an input parameter, and in most
simulations it is set to zero; i.e., the two bubbles merge when
they just touch. When two bubbles are merged, the sum
of their masses and momenta are preserved. The merged
bubble is placed at the center of mass of the two original
bubhbles.

D. A4 Simple Turbulence Model

A very simple turbulence model is used to simulate the
effect of the fluctuating continuous phase velocity field. The
velocity of each particle is assumed to consist of the
deterministic velocity component modeled above plus an
additive fluctuating component generated by the turbulence

O

“ £ T
T | i
R D—
b R,
Sphere or o R.=092R
O}:)late Taylor Cylindrical b

) Bubble
FIG. 3. Calculated bubble shapes.
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present in the continuous phase. The particle positions are
then calculated using,

dx,

1
?=§(up+u;“}+u;, (25)
dy, .
Yy, (26)
dz,
paind 27
= 27)

where u,,, v,,, and w, are the velocities generated by the con-
tinuous phase turbulence in the x,y, and z directions,
respectively, These fluctuating continuous phase velocities
are related to the intensity of the turbulent wakes produced
by the neighboring particles (wall effects are negiected). A
simple random walk process that produces the same fluid
parcel dispersion as found in homogeneous turbulence as
developed by Tennekes and Lumley [ 15] is used to estimate

the size of u,, v,, and w,, see Stuhmiller [10].

Y. SUMMARY OF BASIC EQUATIONS

For the discrete phase, the basic equations are the mass
conservation (1), the momentum balance (2), and the
kinematic position equation (4} The continuous field
equations for each cell are the mass conservation (5) and the
momentum balance (6). The above five equations (per
particle, per cell) are the basic equations to be solved for the
five new time variables, V', up ™', x2 ), Pyt uf* ! The
formulas of Section IV.A, are used to express the volume
fraction, «,, in terms of the particle volume, V,. The
remaining state variables, p7* ' and p}*', are functions of
the independent state variable, P7**. The present version of
DISCON neglects any pressure difference between the
phases; therefore, P7*' (when interpolated to a particle
position) forms an independent state variable for the
particle phase. All state relationships in DISCON are
lincarized during a time step.

An examination of the basic finite difference equations
reveals the following:

» They are linear in the new time variables. Hence, each
time advancement only requires the solution of a linear
system of equations. This is a very complicated linear
system due to the mixed Lagrangian and Eulerian features
of the equations and the implicit coupling between the
phases caused by the time derivatives of o, in Eq. (5).

» The acoustic terms {i.e., velocities in Eq. (5) and
pressure gradient in Eq. (6)) are evaluated implicitly; hence
there is no upper limit on the allowable time step size due to
acoustic wave propagation.



374

« The drag term in the particle momentum equation has
been evaluated implicitly in «,. Hence, the short time con-
stant associated with the large drag force on the particle
does not lead to a stability restriction of the time step size.

Because of the explicit evaluation of the convective terms
in the continuous phase, the time step size is restricted by
the material Courant limit. In addition to the material
Courant limit stability restriction on 4, the step size must
be chosen to resolve the accuracy of the important physics
of any given process. '

V1. SOLUTION SCHEME

The solution scheme is a semi-implicit scheme and is
outlined below for one time step of the calculation.

At the beginning of each time step, the continuous phase
density, acceleration, and volumetric flux are interpolated
to obtain local values at each particle location. The shape of
the particle is computed and the drag coefficient is
determined using Eqs. (17)-(18). The wake velocities at
each particle’s position due to each of the leading particles
is computed using Eqs. (20}-(22). The largest wake velocity
is used at each particle position to modify the far field
velocity of the particle. Next, coefficients that go into
computing the drag and the added mass force on each
particle due to the continuous phase fluid are computed
using Eq. (3).

Terms that go into the discrete phase momentum equa-
tion are now known, and the new time particle velocity is
computed using Eq. (2). The new time particle position is
computed next from Eq. (4).

The integrated effect of the particles on the continuous
phase are computed. These effects are contained in the last
term of Eq. (6), which is a summation over all the particles
in a momentum controi volume.

The continuous phase velocity for each momentum cell is
computed using Eq. (6). This velocity is explicit and uses the
old time pressure spatial gradient, Py — P _ , since we do
not know the new time pressure spatial gradient yet. We
also compute an influence coefficient, vdp, = — 41t/(p; 4x),
that can later be multiphed by the spatial gradient of the
new time pressure increment, 4P} ' — AP+, and added
to the explicit velocity, 1P, to obtain the new time velocity,

Wt = uS® +odp, [AP;* — APLT]

(28)

The new time pressure increment, 4P" ! = P! — P75
computed vsing an expanded form of the continuous phase
mass ¢quation, Eq. (5),

o [apk] 2P,

v, —k
Pe Vi +o Ve 2P | ar

at

+A(aj+lpj+iu}r'lrl:1_‘xjpju;+l)=0= (29)
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where we have expanded the time derivative into two terms.
We replace the two velocities in the mass flux term in this
equation with a suitable form of Eq. (28). For the derivative
of the volume fraction, du, /ét, we use Eq. (16}, which brings
in a dV,/dt term, which can be expressed using an expanded
form of the particle phase mass equation, Eq. (1),

ﬂ’g=_%=_[%]df (30)

dt dr aP | dr’

Thus, Eq. (29) becomes a tridiagonal system of equations
involving only the pressure increment at cell &, and its adja-
cent neighboring cells, £+ 1 and k— 1. This tridiagonal
system is solved for the pressure increment in each cell using
a simple tridiagonal solver.

With the new time pressure increment known, the new
time continuous phase velocity is computed using Eq. (28),
and the new time particle volume is computed using
Eg. (30).

Using the new time particle volume, the fraction of each
particle in cell &, #;,,, is computed using Eq. (8), as is the
volume fraction of the particle phase in each cell using
Eq. (9). The volume fraction of the continuous phase in
each cell, «,, the volumetric flux, and the acceleration terms
are also computed at this time.

The new time particle volume allows us to compute a new
particle shape prior to checking for the possible merging of
two particles. If two particles overlap by some specified frac-
tion, which is input, the two particles are replaced by one
particle having a mass equal to the sum of the masses of the
two merged particles, 2 momentum equal to the sum of the
momenta of the two merged particles, and volume equal to
the sum of the volume of the two merged particles. The new
particle is located at the center of mass of the two merged
particles. The pressure of the new particle is a mass-
weighted average of the pressure of the two merged par-
ticles. As a final step, the continuous phase and the particle
phase densities are computed from an appropriate state
equation. :

This concludes one time step of the calculation, and we
repeat these steps for the next time step.

V¥II. SAMPLE TEST PROBLEMS

A. Comparison with the Crabtree Experiment

Crabtrec and Bridgwater [15] conducted experiments in
which they bubbled a gas into the bottom of a large tank
containing a viscous liquid and studied the coalescence of a
trailing bubble with a leading bubble. They measured the
relative motion of verticaily aligned bubble pairs, each
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having volumes from 10 to 40cm?® in a 67% weight
solution of sucrose in water. The Reynolds numbers based
on bubble diameters were in the range of 40-90. The
Crabtree and Bridgwater experimental data were used to
check the drag coefficient model for single bubbles and for
evaluating the wake velocity model for two successive
bubbies.

We simulated their experiment in which a 30 cm® bubble
was followed by a 25 ¢cm? bubble. The rise of the front bub-
bie is essentially unaffected by the trailing bubble, and
hence, it has a constant velocity, shown in Fig. 4 as a
straight line. Figure 4 also shows a plot of distance versus
time for the trailing bubble from the experiment.

Using Eq.(22) with a,=020 as recommended by
Stuhmiiler, we see from Fig. 4 that the DISCON calculation
of the trailing bubble’s path deviates from the experimental
data as it approaches the leading bubble. With a,, = 0.20, we
predict that the trailing bubble merges with the front bubble
at 0.65 s. However, in the experiment, the time at which the
two bubbles merged was closer to 0.8 s. We then modified
the centerline wake induced velocity correlation given in
Eq. (22) for small separation distances by changing a,, from
0.2 to 0.45. With this change, we obtained almost perfect
agreement with the experimental data.

There was a wide scatter in the data points that were used
by Stuhmiller in obtaining his original centerline wake
velocity correlation. When the modified correlation was
plotted over the data, it fit the data as well as Stuhmiller’s
original correlation. All further simulations were made with
a,, = 045.

B. Comparison with the Jaycor Experiment

The simulation model embodied in DISCON s
inherently statistical. Because individual particles are

100
& Exp.
80 1 B Exp.
_ —= Calc. aw = 0.45 |
E —0= Calc.aw = 0.2
A
E | Leading N
=2 40 '
£ Iy
2
207 Trailing
0T T T r
0.00 0.25 0.50 0.75 1.00
Time (s)
FIG. 4. Position vs time of leading and trailing bubbles in Crabtree
simulation.
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tracked, two different simulations with different particle
volume and velocity distributions can have similar average
values for volume fraction, mean particle velocity, ete. Every
run of DISCON is in effect a new experiment when the par-
ticle distribution is re-initialized, even if the mean values of
the new initialization are identical with the original. Many
experiments have been performed on bubbly air—water
flows, but almost all report only selected mean values.

Stuhmiller from JAYCOR in connection with the
development of their BUBBLE code performed an air-water
experiment in which fairly detailed statistical data were
gathered. In this experiment, air was bubbled up a vertical
water-filled pipe, and movies were taken at various axial
elevations. At each elevation, the volume and velocity of
each passing bubble was measured and recorded. These
volumes and velocities were then grouped into a set of bins.
For example, all bubbles having velocities between 20 and
22 cm/s were included in the 21 cm/s velocity bin, and all
bubbles having volumes between 10 and 12 cm?® were
inctuded in the 11 cm? volume bin. Since the raw data was
not available, the data from the plots that were published in
the EPRI report [10] was digitized and used for our com-
parisons with the DISCON calculations. The JAYCOR
experiment consisted of a 1.27em radius circular pipe
having a length of 140 cm. The top of the pipe was open, and
air was bubbled into the bottom at a flow rate of 22.4 cm?/s.

The pipe was modeled with DISCON using 17 volumes.
A time step of 10 ms was used. With this size time step, a
bubble moving at 50 cm/s, which is an upper limit, would
take about 16 time steps to move through a cell. Because of
the statistical nature of the DISCON model, we used an
initial transient period of 100 s, and then gathered numeri-
cal data during the following 100 s.

Figure 5 shows a series of frames, spaced every five time
steps, of the simulated DISCON calculation in the entire
pipe. The first frame is on the left, and frame numbers
increase across the page.

The bubble volume data for a typical JAYCOR experi-
ment and the corresponding DISCON simulation are
shown in Fig. 6. This figure shows both the mean bubble
volume and standard deviation, sigma, at various eleva-
tions.

The experimental data show a systematic evolution of the
flow regimes with elevation. As the bubbles move up the
pipe, they merge causing the mean of the volume distribu-
tion to shift to larger and larger vaiuves. This is shown in
Figs. 5 and 6. As can be seen from Fig. 6, the experimental
data show an increasing spread in the bubble volume, ie.,
standard deviation, with elevation. Close to the orifice,
bubbles are all the same size, while at the higher elevations,
some bubbles have merged to give larger bubbles while
other bubbles remain at their original size, which results in
a larger spread in the bubble volumes.

The numerical simuiation shows fairly good agreement
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FIG. 5. Calculated bubble shapes near the end of the JAYCOR simulation.

with a slight underprediction of bubble volume at the lower
elevations and a slightly higher bubble volume predicted at
the higher clevations. There must be more merging occur-
ring in the middle of the pipe in our simulation than in the
experiment. It should be noted that DISCON predicted a
growth in the standard deviation that parallels the data
trend quite accurately given the statistical nature of the data
and simulation,

Figure 7 shows the mean and standard deviation of the

bubble velocities for both the data from the experiment and
the data from the DISCON simulation. The mean bubble
velocities are slightly overpredicted by DISCON, which is
consistent with the volume data.

It should be noted that while the initial bubbles have an
oblate spheroidal shape, they quickly merge to form a
Taylor cap shape and then merge again to form cylindrical
bubbies. Cylindrical bubbles in this size pipe move at a con-
stant velocity of about 18 cm/s. This singular velocity of a
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40
—T— Vol (calc.)
30 —tr— Sigma (calc.)
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Sigma (Exp.)

volume {cc)

120

Elevation (cm)

FIG. 6. JAYCOR experiment and DISCON simulation, bubbie
volume, and sigma vs axial elevation.

cylindrical bubble is evident in the asymptotic character of
the mean velocity curves at higher elevations. The mean
velocity decreases with increasing axial elevation in the pipe.
From this figure, we can see that there are still some smaller
bubbles or Taylor caps at the higher elevations of the pipe.
The spread in the bubble velocity is almost constant with a
slight decrease with elevation because of the constant
velocity of the cylindrical bubble. The calculated standard
deviation in bubble velocity is somewhat larger than that
from the experimental data.

120
100 —O0— Vel (Calc.)
—&—  Sigma ({Calc.)
801 —® Vel (Exp.)
—#&—  Sjgma (Exp.) .

Velocity (cmfs)

Elevation {cm)

FIG. 7. JAYCOR experiment and DISCON simulation, bubble
velocity, and sigma vs axial cievation.
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VIII. CONCLUSIONS

The tight ¢coupling of both phases in a two-phase flow
requires a discrete particle model that includes implicit
volume fraction coupling as well as the traditional momen-
tum interactions. This implicit coupling has been success-
fully accomplished in the DISCON numerical scheme.

The discrete particle two-phase flow model is able to
dynamically predict the evolution of the flow topology as
particles merge due to wake effects. Many more simulations
must be done, including the effects of bubble generation due
to wail heating and the transition from long cylindrical
bubbles to annular flow, before a completely mechanistic
dynamic evolution of the flow topology can be predicted.
Work along these lines is in progress and will be reported
elsewhere in due course.
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